2x^2-6x+9=7x+7x

Simple and best practice solution for 2x^2-6x+9=7x+7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-6x+9=7x+7x equation:



2x^2-6x+9=7x+7x
We move all terms to the left:
2x^2-6x+9-(7x+7x)=0
We add all the numbers together, and all the variables
2x^2-6x-(+14x)+9=0
We get rid of parentheses
2x^2-6x-14x+9=0
We add all the numbers together, and all the variables
2x^2-20x+9=0
a = 2; b = -20; c = +9;
Δ = b2-4ac
Δ = -202-4·2·9
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{82}}{2*2}=\frac{20-2\sqrt{82}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{82}}{2*2}=\frac{20+2\sqrt{82}}{4} $

See similar equations:

| -6x=12=42 | | 6x+7•-4=4x+4•-4 | | (x-1,5+x)2=60 | | (x-15)^2=28 | | (x-15)^2=29 | | -9=y-1 | | 12z-16+15z=27z-5 | | 4x+31=135 | | 2*(2x+1,5+x)2=60 | | 2*(2x+1,5+x)2=60) | | 12^x=7 | | 7/x-1+15/3x-1=8 | | 5|3(x-6)-2(3x-5)|=0 | | 3x+1,5=30 | | x-6÷3=5 | | 3(4)^x-5=2 | | (7x-7)^2=15 | | 0,75x+0,5=5 | | 8.7a+15=102 | | (x-1,5+x)*2=60 | | y-7=3y-4;y=3 | | -10+2k=k-4k | | 7-8y=-49 | | -2+x/6=0 | | 5x+14=10x-6 | | 7x+5=-4x+37 | | 3=3(11-s)/7 | | 38=32+x | | 3^(x+1)-(1/3×)-2=0 | | 7+b/3=13 | | 5-8n+3n=11-81 | | f(1/4)(1/2)=0 |

Equations solver categories